Submucosal glands and airway defense.
نویسندگان
چکیده
Most airway mucus is produced by submucosal glands in response to neural signals. Gland mucus traps microbes, inhibits their replication, and clears them from the airways. In cystic fibrosis mucus clearance is compromised, allowing pathogens to persist in static mucus. These trigger an influx of inflammatory cells, but optimal effectiveness of inflammation, and especially its resolution, also requires effective mucus clearance. Our objective is to understand the basis for defective mucus clearance in cystic fibrosis. We discovered that in subjects with cystic fibrosis, submucosal gland secretion in response to agents that elevate intracellular cyclic AMP level is completely lost and mucus stimulated by elevating intracellular Ca2+ level is thicker. We hypothesize that loss of functional cystic fibrosis transmembrane conductance regulator from gland serous cells renders them unable to secrete anions and fluid in response to any stimulus, resulting in thickened gland mucus that can be tethered to the gland ducts. In primary ciliary dyskinesias, mucus is normal, but the dysfunctional cilia lining the gland ducts may also lead to inadequate clearance of mucus from glands. Thus, understanding of lung pathology in each disease may require that an improved understanding of gland structure and function be added to our rapidly growing understanding of surface epithelia.
منابع مشابه
Lysozyme secretion by submucosal glands protects the airway from bacterial infection.
Submucosal glands are abundant (approximately 1 gland/mm2) secretory structures in the tracheobronchial airways of the human lung. Because submucosal glands express antibacterial proteins, it has been proposed that they contribute to lung defense. However, this concept is challenged by the fact that mice do not have submucosal glands in their bronchial airways, yet are quite resistant to bacter...
متن کاملThe cytokines interleukin-1β and tumor necrosis factor-α stimulate CFTR-mediated fluid secretion by swine airway submucosal glands.
The airway is kept sterile by an efficient innate defense mechanism. The cornerstone of airway defense is mucus containing diverse antimicrobial factors that kill or inactivate pathogens. Most of the mucus in the upper airways is secreted by airway submucosal glands. In patients with cystic fibrosis (CF), airway defense fails and the lungs are colonized by bacteria, usually Pseudomonas aerugino...
متن کاملParasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system.
Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to ...
متن کاملNew models of the tracheal airway define the glandular contribution to airway surface fluid and electrolyte composition.
Antibacterial defenses in the airway are dependent on multifactorial influences that determine the composition of both fluid and/or electrolytes at the surface of the airway and the secretory products that aid in bacterial killing and clearance. In cystic fibrosis (CF), these mechanisms of airway protection may be defective, leading to increased colonization with Pseudomonas aeruginosa. Submuco...
متن کاملAquaporin-5 dependent fluid secretion in airway submucosal glands.
Fluid and macromolecule secretion by submucosal glands in mammalian airways is believed to play an important role in airway defense and surface liquid homeostasis and in the pathogenesis of cystic fibrosis. Immunocytochemistry revealed strong expression of aquaporin water channel AQP5 at the luminal membrane of serous epithelial cells in submucosal glands throughout the mouse nasopharynx and up...
متن کاملFlagellin/TLR5 signaling potentiates airway serous secretion from swine tracheal submucosal glands.
Airway serous secretion is essential for the maintenance of mucociliary transport in airway mucosa, which is responsible for the upregulation of mucosal immunity. Although there are many articles concerning the importance of Toll-like receptors (TLRs) in airway immune systems, the direct relationship between TLRs and airway serous secretion has not been well investigated. Here, we focused on wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the American Thoracic Society
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2004